Finding the stable structures of N1−xWx with an ab initio high-throughput approach
نویسندگان
چکیده
Using density functional theory calculations, many researchers have predicted that various tungsten nitride compounds N1−xWx (x < 12 ) will be “ultraincompressible” or “superhard,” i.e., as hard as or harder than diamond. Necessary conditions for such compounds are that they have large bulk and shear moduli, greater than approximately 200 GPa, and are elastically and vibrationally stable. Compounds with such desirable properties also must be energetically stable against decomposition into other compounds. This test for stability can only be found after the determination of the convex hull for N1−xWx , which connects the lowest enthalpy structures as a function of composition. Unfortunately, the experimental phase diagram of the N-W structure is uncertain, as it is difficult to break the N2 bond to form compounds with tungsten. Experiment also indicates that there are a large number of partially filled sites in most N-W structures. This introduces computational difficulties since we cannot easily model randomly placed vacancies. In addition, van der Waals forces play a significant role in determining the structure of solid N2 and the nitrogen-rich compounds. This makes it difficult to determine the relative energies of these compounds, as there is no universally accepted density functional incorporating van der Waals interactions. The exact shape and even composition of the convex hull is dependent upon the choice of density functional, even if we only chose between the local density approximation and a generalized gradient functional. Despite these difficulties, computations can determine much about the ground-state form of the convex hull. Here, we use high-throughput calculations to map out the hull and other low-energy structures for the N-W system. The lowest-energy structures all have vacancies, on the tungsten sites in hexagonal-based compounds, and on both the nitrogen and tungsten sites in cubic compounds. We find that most of the N-W structures proposed in the literature, both theoretical and experimental, are above the convex hull, in some cases by over 0.2 eV/atom. One of the ground-state phases, N-W in the NbO structure, has relatively large bulk (>300 GPa) and (>200 GPa) shear moduli, and so is a candidate superhard material. This will require further investigation.
منابع مشابه
Conformational analysis of N- and C-terminally protected tripeptide model glycyl-isoleucine-glycyl: An ab initio and DFT study
An ab initio and density functional theory (DFT) study about conformational analysis of tripeptide model HCO−GLY−L−ILE−GLY−NH2 is presented. The tripeptide was scanned about initial, central, and final residues, separately while for every scanning procedure the two other residues had been kept in the β conformation and side chain (SC) dihedral angles were maintained on the gauche− (g‾) state (χ...
متن کاملAb Initio Study of Vinblastine-Tubulin Anticancer Complex
Vinblastine is an important anticancer agent known to diminish microtubule assembly. Ab initio calculations are applied to examine the structural properties and different energies of vinblastine-tubulin complex in different dielectric constants and temperatures. The aims of this work are discovery the best optimized structure and thermodynamic properties of vinblastine-tubulin complex ...
متن کاملHigh-throughput and data mining with ab initio methods
Accurate ab initio methods for performing quantum mechanical calculations have been available for many years, but their speed, complexity and instability have generally constrained researchers to studying only a few systems at a time. However, advances in computer speed and ab initio algorithms have now created fast and robust codes, where large numbers of calculations can be performed automati...
متن کاملAb initio and DFT studies on tautomerism of 5-methyl cytosine in gaseous phase
Ab initio and DFT methods have been used to study the seven tautomeric forms of 5-methylcytosine molecule.The related tautomer in gas phase have been studied at HF/6-31G, HF/6-31G* and B3LYP/6-31G* levels oftheory. The structures,enthalpies,entropies,Gibbs free energies,relative tautomerization energies of tautomersand tautomeric equilibrium constants were compared and analyzed along with full ...
متن کاملCharacterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br): An ab initio, DFT, NBO and AIM study
The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hy...
متن کامل